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Abstract

Singular terms in differential equations pose severe challenges for numerical approximations on regular grids.

Regularization of the singularities is a very useful technique for their representation on the grid. We analyze such

techniques for the practically preferred case of narrow support of the regularizations, extending our earlier results for

wider support. The analysis also generalizes existing theory for one dimensional problems to multi-dimensions. New

high order multi-dimensional techniques for differential equations and numerical quadrature are introduced based on

the analysis and numerical results are presented. We also show that the common use of distance functions in level-set

methods to extend one dimensional regularization to higher dimensions may produce Oð1Þ errors.
� 2004 Published by Elsevier Inc.
1. Introduction

Regularization of singular terms is an important component in many computational techniques, as for
example in the vortex method by Chorin [3], the immersed boundary method by Peskin [11], in the front-

tracking method by Tryggvason et al. [17] and in connection to the level-set method, see Osher and Fedkiw

[9], Sethian [13].

With the exception of the vortex method, these are all techniques for moving interface problems, in

which the underlying grid is not adapted to the moving boundaries. The boundaries, or interfaces, are

instead represented separately. Singular source terms with support on these interfaces must be discretized

on the background grid, which is often uniform. In a finite element setting, the handling of the interface

source terms can be done by evaluating the resulting surface integral in the weak formulation [16]. In a
finite difference method, an alternative to regularization is to incorporate the jump conditions arising from

the singular term into the numerical algorithm, as is done in the immersed interface method by LeVeque
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and Li [7]. It is however more commonly done by regularizing the singularity. The discrete vortices in the

vortex method are represented by regularized vortex blobs [3,1].

Numerical regularization has been used in a variety of applications. Some of the examples are: simu-
lation of elastic boundaries in blood flow [10,11], immiscible multi-phase flows [9,13,17], dendritic solidi-

fication [4,9], subgrid wire modeling in computational electromagnetics [6], discretization in the vortex

method [1,3], and segmentation in image processing [9].

The analysis of regularization is less developed, especially in more than one dimension, and the purpose

of this paper is to answer some open questions from earlier papers and also to introduce improved methods

based on the analysis.

We want to replace the Dirac delta function d by a more regular function de, which can be used on

standard computational grids in connection to numerical solution of differential equations with singular
source terms and quadrature with singular integrands. We are in particular interested in multi-dimensional

singular functions.

Let C � Rd be d � 1 dimensional continuous and bounded surface and let S be surface coordinates on C.
Define dðC; g; xÞ; x 2 Rd as a delta function of variable strength supported on C such thatZ

Rd
dðC; g; xÞf ðxÞdx ¼

Z
C
gðSÞf ðXðSÞÞdS; ð1Þ

where XðSÞ 2 C.
Now assume that the space Rd is covered by a regular grid

xj

� �
j2Zd ; xj ¼ ðxð1Þj1 ; . . . ; x

ðdÞ
jd Þ;

xðkÞjk ¼ xðkÞ0 þ jkhk; jk 2 Z; k ¼ 1; . . . ; d:
ð2Þ

We are interested in C with general location relative to the computational grid. Since we will consider fully

general C there is no restriction if we fix xðkÞ0 and we will for simplicity let xðkÞ0 ¼ 0, k ¼ 1; . . . ; d in the rest of

the paper.

One important property with the numerical regularization technique is that this type of regular grids and

standard finite difference or finite element methods can be used. Difficulties with the singularities and the
geometry of C is all taken care of in the design of the regularization.

When regularizing dðC; g; xÞ by some deðC; g; xÞ of compact support, one would like to retain the defi-

nition of the delta function in Eq. (1) in a discrete sense up to some order of accuracy. We replace the

integral over the domain by a discrete sum and define the discretization error as

E ¼
Yd
k¼1

hk

 !X
j2Zd

deðC; g; xjÞf ðxjÞ
����� �

Z
C
gðSÞf ðXðSÞÞdS

�����: ð3Þ

With f � g � 1, and C a curve in R2, the S-coordinate being the arclength along C, the error E is the

error made in computing the length of the curve. More general g-functions are common for singular source

terms where dðC; g; xÞ represents a physical force along an interface, such as an elastic force or a surface

tension force. We shall see that the error term in Eq. (3) also plays an important role in the numerical

approximation of differential equations.

Let us first consider a simple one-dimensional regularization, an appropriate scaling of uL
h in Fig. 1

deðxÞ ¼
ðxþ eÞ=e; �e6 x < 0;
ðe� xÞ=e; 06 x6 e;
0; jxj > e:

8<
: ð4Þ
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The error E can be written as a sum of an analytical error and a quadrature error

E ¼ h
X
j2z

deðxj

����� � �xÞf ðxjÞ � f ð�xÞ
�����

6 f ð�xÞ
���� �

Z
R

deðy � �xÞf ðyÞdy
����þ

Z
R

deðy
����� � �xÞf ðyÞdy � h

X
j2z

deðxj � �xÞf ðxjÞ
�����:

It is possible to check that for regular function f ðxÞ these terms are of order Oðe2Þ and Oððh=eÞ2Þ, re-
spectively [14]. With the scaling e ¼

ffiffiffi
h

p
the overall approximation is of first order in h. This type of analysis

is valid for a wide range of e values. Raviart [12], performed such an analysis for point sources in multi-

dimensions, in connection to particle methods. It can also be extended to multi-dimensions for Dirac delta

functions with support on manifolds and to properties connected to differential equations [14,15]. For a

very narrow support, the de function is not sufficiently resolved to analyze the error by splitting it into these

two parts. Instead, the error must be analyzed directly, taking into account discrete effects of the com-

putational grid.

For special choices of deðxÞ and support ð�e; eÞ, the error E is particularly small. If deðxÞ is given by Eq.

(4), with e ¼ h, E is of the order Oðh2Þ, which can be seen after Taylor expanding f ðxjÞ around �x, see Section
2. This and other types of narrow delta approximations with e proportional to h are computationally

convenient and the most common in practice. They are the focus of the analysis in this paper.

Such narrow delta approximations were studied by Beyer and LeVeque [2], in connection the heat

equation in one dimension. They introduced discrete moment conditions, and performed a detailed error

analysis for a second order finite difference discretization of the equation. Wald�en [18] later introduced de
functions obeying higher order moment conditions in one dimension. Such functions had also been in-

troduced earlier, in the context of designing interpolation rules on uniform grids, see Monaghan [8] and the

references therein. Compare also to the conditions introduced by Beale and Majda [1] for higher order
vortex methods.

A one dimensional de function satisfies q discrete moment conditions if

h
X1
j¼�1

deðxj � �xÞðxj � �xÞr ¼ 1; r ¼ 0;
0; 16 r < q

�
ð5Þ

for all values of �x. If de satisfies q moment conditions, we will say that it has a moment order q. Proposition
1 in Section 2.1 states the known result E6Chq (see also [2]). In this section, we furthermore give examples

of regularized d functions de and also prove that there exists de with support of width 2e with moment order

q if and only if 2eP qh. In Section 2.2, we extend Proposition 1 to approximations with non-uniform

quadrature weights.
There are basically two techniques that are used to extend this type of regularization to the multi-di-

mensional case for which the singularity is supported on a curve or a surface C. One is the product formula

following Peskin [11]

deðC; g; xÞ ¼
Z
C

Yd
k¼1

dek ðxðkÞ � X ðkÞðSÞÞgðSÞdS ð6Þ

in which dek corresponds to the one dimensional regularized d function, and XðSÞ ¼ ðX ð1ÞðSÞ; . . . ;X ðdÞðSÞÞ is
a point on C.

The other method is based on the distance to C, and here

deðC; g; xÞ ¼ ~gðxÞdeðdðC; xÞÞ; ð7Þ
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where dðC; xÞ is the closest distance fromx to anypoint onC, and ~g is an extension from gðSÞ to aneighborhood
ofC. This technique is commonly used in connection to the level set method since the distance function dðC; xÞ
is then readily available, see [9,13]. We will in this paper not discuss the method for extending g.

The extension to multi-dimensional delta functions in connection to quadrature is studied in Section 3.

For de defined by the product formula in Eq. (6), we prove that if dek has a moment order of q, then E6Chq

ðh ¼ maxk hkÞ independent of dimension, with E as defined in Eq. (3). We give numerical results in two

dimensions that include different types of regularizations of singularities supported on curves.

For the regularizations based on the distance function the result is very different. Even if this technique is

commonly used it produces Oð1Þ errors in some cases. For certain curves C there may be no convergence as

h ! 0 if e is proportional to h. We give both analytical and numerical examples with over 10e is propor-
tional to ha with 0 < a < 1 there is convergence (see [15]) but e ¼ h or e ¼ 2h are most common in practice.

Section 3 ends with an extension of the product formula technique to the less singular characteristic

functions.

The analysis of quadrature expressions of the form above in Eq. (3) is also useful for the approximation

of differential equations

LðuÞ ¼ dðC; g; xÞ; x 2 X � Rd ; ð8Þ
where L is a linear differential operator and we assume that u satisfies appropriate initial and boundary

conditions.

Let a numerical approximation of (8) have the form

LhðuhÞj ¼ deðC; g; xjÞ; j 2 Xh; ð9Þ

where Xh is the index set for the grid points inside X. With homogeneous initial and boundary conditions uh
will be a linear combination of the values fdeðC; g; xjÞgj2Zd . The linear relation is given by the discrete

Greens function Gjm and we can write

uhðxjÞ ¼
Yd
k¼1

hk

 !X
m2Zd

deðC; g; xmÞGjm: ð10Þ

This is to be compared to the corresponding expression for the analytic solution

uðxÞ ¼
Z
Rd

dðC; g; yÞGðx; yÞdy: ð11Þ

The difference between uhðxjÞ in Eq. (10) and uðxÞ in Eq. (11), is of the form of E in Eq. (3), if we identify G
with f . However, the discrete Greens function Gjm is typically not simply an evaluation of the Greens

function at certain points, but rather in general an approximation to the Greens function to some order of
accuracy. Hence, in this case there is an additional source of error, which is determined by the choice of

discrete operator Lh in Eq. (9).

In Section 4, we first consider two point boundary value problems for ordinary differential equations

�uxx ¼ dðx� �xÞ; 06 x6 1

with homogeneous boundary conditions. The discrete Greens function for this problem, when discretized

by a standard second order finite difference approximation, is the same as the analytic Greens function, i.e.,

Gjm ¼ Gðxj; xmÞ, where

Gðx; yÞ ¼ xð1� yÞ; 06 x6 y;
yð1� xÞ; y < x6 1

�

and hence, Gjm is linear if xj 6¼ xm. We get full accuracy away from x ¼ �x if de satisfies two moment con-

ditions (q ¼ 2 in Eq. (5)).
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We continue by carrying this type of analysis further to various numerical approximations and to partial

differential equations. Different numerical approximation of the differential operator may require different

d-function regularizations. We show that full fourth order convergence can be achieved away from the
singularity, also in parabolic problems, when a fourth order difference formula of the ordinary differential

operator is coupled to a regularization de with moment order 4 ðq ¼ 4Þ.
In general, any de regularization does however produce OðhÞ errors in a neighborhood of the singularity.

Only in special cases, with de approximations designed to match the chosen difference stencil used to dis-

cretize the problem, can this error be reduced to Oðh2Þ. For the standard fourth order approximation, this

special function is however only of moment order 2, and the error away from the singularity will in this case

only be second order. We study both stationary and time dependent singularity locations ðdðx� �xðtÞÞÞ and
we give some explanation to some numerical results described in [2,18].

In the end of Section 4, we consider the discretization of an elliptic equation with a source term that has a

singular support on a curve C in R2 . As was discussed above, the regularization de in one dimension can be

extended to the two dimensional case either based on the product formula or on the distance to C (Eqs. (6)

and (7)). Furthermore, the results obtained regarding the accuracy for the quadrature are also relevant for

the accuracy of the discrete solutions to this elliptic equation.

For de extended by the product rule, the error away from the singularity will be of order p, if we combine

a pth order finite difference method with a de function based on a one dimensional de function of moment

order p. This is confirmed in numerical experiments with p ¼ 2 and p ¼ 4. Accordingly, the results for the
distance formula for the quadrature implies significantly less accurate results.
2. Discrete regularization in one variable

In the following section, we will discuss the discretely regularized multi-dimensional delta functions.

These will be based on one-dimensional delta function approximations. We devote this section to give some

results for the regularization in one variable, and to introduce some different delta function approximations.

2.1. Discretization error

We begin by introducing the discrete moment conditions.

Definition 2.1. A function deðxÞ 2 Qq if de has compact support in ½�e; e�, e ¼ mh, m > 0 and

Mrðde;�x; hÞ ¼ h
X1
j¼�1

deðxj � �xÞðxj � �xÞr ¼ 1; r ¼ 0

0; 16 r < q

�
ð12Þ

for any �x 2 R, where xj ¼ jh, h > 0, j 2 Z.

The first moment condition, for r ¼ 0, ensures that the mass of the delta function is identically 1, inde-

pendent on shifts in the grid. The higher moment conditions are useful when the delta function is multiplied

by a non-constant function, as we will see in the following proposition. This result has also been given in [2].

Proposition 1. Suppose that de 2 Qq, q > 0 as in Definition 2.1, and f ðxÞ 2 CqðRÞ. Then

E ¼ h
X1
j¼�1

deðxj

����� � �xÞf ðxjÞ � f ð�xÞ
�����6Chq;

and E ¼ 0 if f is constant.
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Proof. By Taylor expansion follows

h
X1
j¼�1

deðxj � �xÞf ðxjÞ ¼ h
X1
j¼�1

deðxj � �xÞ
Xq�1

p¼0

hp

p!
ðxj

"
� �xÞpf ðpÞð�xÞ þOðhqÞ

#

¼
Xq�1

p¼0

hp

p!
f ðpÞð�xÞ h

X1
j¼�1

deðxj

 
� �xÞðxj � �xÞp

!
þOðhqÞ

¼ M0ðde;�x; hÞf ð�xÞ þ
Xq�1

p¼1

hp

p!
f ðpÞð�xÞMpðde;�x; hÞ þOðhqÞ:

Since de 2 Qq, q > 0, M0ðde;�x; hÞ ¼ 1 and Mpðde;�x; hÞ ¼ 0, for p ¼ 1; . . . ; q� 1. From this, the theorem

follows.

From this theorem, we see that the number of discrete moment conditions satisfied by the delta function

approximation determines the numerical accuracy. The discretization error E can be interpreted as the error

made when integrating by the trapezoidal rule, with �x away from the boundary. It can also be regarded as

the error in interpolating f at �x from the grid values of f , the choice of de determining the interpolation

weights. Hence, de-functions can be identified with interpolation kernels for interpolation on uniform grids,
see [8]. Let us show that it is possible to construct such one dimensional de functions with any number of

correct moments depending on the size of the support.

Theorem 1. There exists de 2 Qq if and only if 2eP qh.

Proof. Consider first a configuration for which xjþ1; . . . ; xjþn and only those points are in the support of

deðx� �xÞ. Let yk ¼ deðxk � �xÞ, k ¼ jþ 1; . . . ; jþ n, then de 2 Qq implies

Ay ¼ e1;

where

y ¼ ðyjþ1; . . . ; yjþnÞT; e1 ¼ ð1; 0; . . . ; 0ÞT

and

A ¼

1 1 . . . 1

njþ1 njþ2 . . . njþn

..

. ..
. ..

.

nq�1
jþ1 nq�1

jþ2 . . . nq�1
jþn

2
6664

3
7775:

with nk ¼ xk � �x, k ¼ jþ 1; . . . ; jþ n. The matrix A is of Vandermonde type and of maximal rank.

Thus, for any �x there is a unique solution for n ¼ q and a solution y depending on n� q parameters

for n > q.
For n < q consider the matrix A augmented with the column e1. This matrix is also of Vandermonde type

for an �x such that nk 6¼ 0, k ¼ jþ 1; . . . ; jþ n and thus all columns are linearly independent and there is no

solution for Ay ¼ e1.

The theorem now follows since 2eP qh implies that there is at least q points xk in the support of de (i.e.,
nP q above). For 2e < qh there are at most q� 1 points xk in the support ðn < qÞ.



468 A.-K. Tornberg, B. Engquist / Journal of Computational Physics 200 (2004) 462–488
Remark 2.1. Consider regularizations de with a fixed number of grid points n ¼ q in its support for some

range of �x. The solution y and thus de then depend analytically on the parameters of A and hence on �x.
When the number of grid points in the support n is larger than q, which is typical for some values of �x, that
is no longer true. This results in a piecewise smooth de. One example is the narrow hat function which will
be given below (Eqs. (13) and (14)) which is linear for �h < x < 0 and 0 < x < h but has a discontinuous

derivative at x ¼ 0. For some other choices of 2e ¼ qh, there is even less regularity with discontinuities in de.

As noted above, the most compact de approximation that obeys q moment conditions may not be
continuous. In computations, it is however most practical to deal with continuous de functions. Define an

approximate continuous delta function de as

deðxÞ ¼
1
humðx=hÞ; jxj6 e ¼ mh;
0; jxj > e ¼ mh;

�
ð13Þ

where de 2 CðRÞ, i.e., umð�mÞ ¼ umðmÞ ¼ 0. With this notation, the narrow linear hat function dLh , with
e ¼ h, is defined with

uL
1 ðnÞ ¼ minðnþ 1; 1� nÞ ð14Þ

and the wider hat function dL2hðe ¼ 2hÞ with

uL
2 ðnÞ ¼ 1

4
minðnþ 2; 2� nÞ: ð15Þ

Furthermore, we define the cosine function dcos2h ðe ¼ 2hÞ

ucos
2 ðnÞ ¼ 1

4
ð1þ cosðpn=2ÞÞ ð16Þ

and a piecewise cubic function, dC2hðe ¼ 2hÞ with,

uC
2 ðnÞ ¼

1� 1
2
jnj � jnj2 þ 1

2
jnj3; 06 jnj6 1;

1� 11
6
jnj � jnj2 � 1

6
jnj3; 1 < jnj6 2:

(
ð17Þ

This function can also be found in [8,18].

Denote �x ¼ xk þ gh, where xk is the grid point to the left of �x, and so g 2 ½0; 1Þ. The discrete moments

(Definition 2.1) can then be expressed as Mrðde;�x; hÞ ¼ Mrðue=h; gÞ, where for m > 0 integer

Mðum; gÞ ¼
Xkþm

j¼k�ðm�1Þ
uðj� k � gÞðj� k � gÞr:
−2 0 2
0

0.5

1

−2 0 2
0

0.5

1

−2 0 2

0

0.5

1

ϕ L
1 ϕ cos

2 ϕ C
2

Fig. 1. uðnÞ versus n. From left to right, uL
1 ucos

2 , uC
2 , as defined in Eqs. (14), (16) and (17). The integral over each function is 1.
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For all the functions given in Eqs. (14)–(17), the mass condition, i.e., the moment condition for r ¼ 0 is

fulfilled. The first non-zero higher moment for these functions evaluates as follows; for the narrow linear

hat function, the wider linear hat function, the cosine function, and the piecewise cubic function,
respectively

M2ðuL
1 ; gÞ ¼ g� g2;

M2ðuL
2 ; gÞ ¼

1

2
ð1þ 2g� 2g2Þ;

M1ðucos
2 ; gÞ ¼ 1

2
ð1� cosðpg=2Þ þ sinðpg=2Þ � 2gÞ;

M4ðuC
2 ; gÞ ¼ gð1� gÞðg� 2Þðgþ 1Þ:

From Proposition 1, we have that the error is of OðhÞ for the cosine function, Oðh2Þ for the two linear hat

functions, and Oðh4Þ for the piecewise cubic function introduced in (17).

For any choice of u, such that the delta approximation de 2 Qq, we find that the leading order term of the

error can be written CðgÞhq. Now, consider two grids with resolution h and h=2, respectively, and a point �x
such that �x ¼ xk þ gh in the coarse grid. The g value in the fine grid is 2g if g < 1=2 and 2ðg� 1=2Þ if

gP 1=2, i.e., it is zero for g ¼ 1=2, which is a grid point in the fine grid. We write gF ¼ 2ðg� 1
2
Hðg� 1

2
ÞÞ,

where H is the Heaviside function. The fraction of the error on the fine grid to the error on the coarse grid is

then given by

Eðu; f ; gF; h=2Þ
Eðu; f ; g; hÞ

����
���� ¼ Mqðu; 2ðg� 1

2
Hðg� 1

2
ÞÞ

Mqðu; gÞ

����
���� 12q ¼ HðgÞ

2q
: ð18Þ

To have convergence order of q that is uniform in h, the quotaHðgÞ ¼ Mqðu; gf Þ=Mqðu; gÞ would need to be

a constant, which is not the case. The error is formally OðhqÞ ðE6ChqÞ, but not uniformly so

ðE 6¼ Chq þOðhqÞÞ, and in numerical tests with comparison of errors on refined grids, this will alter the

observed convergence – for some shifts it will be of lower order than q, for other shifts higher.
As noted above, the error for the cosine function dcos2h is the largest; it is OðhÞ. In addition,

Hcos 6 jð4� pÞ=ð2� p=
ffiffiffi
2

p
Þj. Therefore, the minimum reduction in error found when doubling the reso-

lution is 2=maxðHcosÞ < 1. Depending on the shift in the grid, the error can even increase after refinement.

For the wider hat function dL2h, the minimum reduction of the error for one specific refinement is 21:82

(formally the error is Oðh2Þ), and for the piecewise cubic function dC2h, is 2
3 (formally Oðh4Þ).

This is for a specific shift in the grid. If the error is averaged over many shifts in the grid, the formal order

is recovered.

2.2. General quadrature methods

The discretization error E in Proposition 1 can be regarded as the error in the integration of f ðxÞdðx� �xÞ
for some approximation de, when computed by the trapezoidal rule. The lowest order moment condition in

Eq. (12) with r ¼ 0 is for example satisfied by de ¼ dLh , the hat function with support ð�h; hÞ. With f
constant, this condition is sufficient to yield E ¼ 0. This moment condition does however not guarantee the

correct mass if we compute the integral by Simpson’s rule

IS ¼ h
X
j2Z

1

�
þ 1

2
ð � 1Þj

�
dLh ðxj � �xÞ:

For example with �x ¼ kh and k integer, IS 6¼ 1; for odd k: IS ¼ 1:5 and for even k: IS ¼ 0:5. The remedy is to

use a wider support in de. If d
L
h is replaced by a hat function with twice the support dL2h, then IS ¼ 1 for any
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�x 2 R. This can easily be seen directly, but also follows from the following general result for cyclic

quadrature methods as, for example the Newton Cotes rules.

Theorem 2. Assume de 2 Qq, q > 0 as in Definition 2.1, and f ðxÞ 2 CqðRÞ. Furthermore, assume that the

quadrature weights are cyclic with period M such that

XM
m¼1

wm ¼ M ;

and rescale de to a function dMe with support on ½�Me;Me�. Then

h
X
j2Z

wmðjÞdMeðxj

����� � �xÞf ðxjÞ � f ð�xÞ
�����6Chq;

where wmðjÞ is the quadrature weight in grid point j.

Proof. Using that the quadrature rule is cyclic, we can write the sum above as

Iðf Þ ¼ h
X
j2Z

XM
m¼1

wmdMeðhðjM þ mÞ � �xÞf ðhðjM þ mÞÞ;

using that Xj ¼ jh, h > 0, j 2 Z. Changing the order of the sums, we have

Iðf Þ ¼
XM
m¼1

wmImðf Þ; where Imðf Þ ¼ h
X
j2Z

dMe ~xðmÞj

�
� ~x
	
f ~xðmÞj

� 	

with ~xðmÞj ¼ jH þ ~xðmÞ0 , H ¼ Mh and ~xðmÞ0 ¼ mh.
de 2 Qq implies dMe 2 Qq with step size H , and so Taylor expansion yields (compare the proof of

Proposition 1)

Imðf Þ ¼
H
M

X
j2Z

dMe ~xðmÞj

�
� �x
	
f �xðmÞj

� 	
¼ 1

M
f ð�xÞ
"

þ
Xq�1

p¼1

hp
p!
f ðpÞð�xÞMpðde;�x� ~x0;HÞ þOðhqÞ

#

¼ 1

M
f ð�xÞ þ rm

with jrmj6C0hq. In total

jIðf Þ � f ð�xÞj6
XM
m¼1

wm

M
ðf ð�xÞ

����� þ rmÞ � f ð�xÞ
�����6MC0hq 6Chq

and the theorem follows.

This observation is important in connection to finite difference discretizations of partial differential

equations, when wider difference stencils are used. This will be discussed in Section 4.
3. Multi-dimensional discrete regularization

As was discussed in Section 1, a multi-dimensional regularized delta function can be denned extending a

one dimensional delta function approximation de to several dimensions by either the product rule or by

using the distance to C (Eqs. (6) and (7)).
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In the following two sections, we will discuss these two different approaches. Since they are both based

on the one dimensional delta function approximation, the discrete moment conditions and results intro-

duced in Section 2 will be important in the analysis.
3.1. Regularization from product formula

We want to define a delta function approximation in Rd, and we will do so based on a product of one

dimensional delta functions in each coordinate direction. As in Peskin [11], we define

deðC; g; xÞ ¼
Z
C

Yd
k¼1

dek ðxðkÞ � X ðkÞðSÞÞgðSÞdS ð19Þ

with

x ¼ ðxð1Þ; . . . ; xðdÞ 2 Rd ;

XðSÞ ¼ ðX ð1ÞðSÞ; . . . ;X ðdÞðSÞÞ 2 C;

e ¼ ðe1; . . . ; edÞ ¼ ðmh1; :::;mhdÞ:

The grid sizes h1; . . . ; hd refers to the regular grid introduced in Eq. (2).

As a preparation for the forthcoming analysis we introduce a multi-index b, s.t. jbj ¼
Pd

i¼1 bi,

and

Dbf ¼ ob1þb2þ���þbd

oxb1oxb2 � � � oxbd f : ð20Þ

We have the following theorem:
Theorem 3. Suppose that de 2 Qq, q > 0, as in Definition 2.1; g 2 C and f 2 CrðRdÞ, rP q. Then

E ¼
Yd
k¼1

hk

 !X
j2Zd

deðC; g; xjÞf ðxjÞ
����� �

Z
C
gðSÞf ðXðSÞÞdS

�����6Chq ð21Þ

with h ¼ max16 k6 dhk and E ¼ 0 for constant f.

Proof. Introducing the definition of deðC; g; xjÞ in Eq. (19), we have

I ¼
Yd
k¼1

hk

 !X
j2Zd

deðC; g; xjÞf ðxjÞ ¼
Yd
k¼1

hk

 !X
j2Zd

Z
C

Yd
k¼1

dek ðx
ðkÞ
jk

""
� X ðkÞðSÞÞ

#
gðSÞdS

#
f ðxjÞ:

Moving in the summation over j inside the integral, this can be written as

I ¼
Z
C

h1
X
j12Z

de1ðx
ð1Þ
j1

"
� X ð1ÞðSÞÞ h2

X
j22Z

� � � � � � hd
X
jd2Z

dedðxðdÞjd

""
� X ðdÞðSÞf ðxjÞ

#
� � �
##

gðSÞdS:

From Taylor expansion of f ðxjÞ in xðdÞ around X ðdÞðSÞ, using ded 2 Qq, similarly to the proof of Proposition

1, the last bracket evaluates as
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hd
X
jd2Z

ded ðx
ðdÞ
jd � X ðdÞðSÞÞf ðxjÞ ¼ f ðxð1Þj1 ; . . . ; x

ðd�1Þ
jd�1

;XdðSÞÞ

þ
X

q6 p6 r

hpd
p!

Mpðde; xðdÞ; hdÞ
op

oxpd
f

ðxð1Þj1
;...;xðd�1Þ

jd�1
;X ðdÞðSÞÞ

����� þOðhrþ1Þ:

Repeating this step for xðd�1Þ; . . . ; xð1Þ gives

I ¼
Z
C

f ðXðSÞÞ

2
4 þ

X
q6 jbj6 r;bi2Rq

Yd
i¼1

hbii
bi!

Mbiðde;X
ðiÞðSÞ; hiÞ

" #
Dbf jxðSÞ

3
5gðSÞdS þOðhrþ1Þ:

Here we have again used M0ðde;X ðiÞðSÞ; hiÞ ¼ 1 and Mpðde;X ðiÞðSÞ; hiÞ ¼ 0 for p ¼ 1; . . . ; q� 1, i ¼ 1; . . . ; d,
and so bi 2 Rq where

Rq ¼ f0; q; qþ 1; . . . ; rg:

Hence, we have

I ¼
Z
C
f ðXðSÞÞgðSÞdS þ ~E; j~Ej6Chq;

where h ¼ max16 i6 d hi. Here, we have used that j
R
C gðSÞdSj is bounded independent of h. In the

special case where f is constant, all derivatives of f are zero, and so ~E ¼ 0. From this, the theorem

follows.

Remark 3.1. There is a discrete analogue of Theorem 3. If the integral over C is replaced by a discrete sum,

both in the definition of de in Eq. (19) and of E in Eq. (21), the same estimate for E holds. The proof is

identical to before, except that the integral over C needs to be changed to the discrete sum.

Let us now perform a numerical test. Using the parameter h 2 ½0; 2p�, the coordinates of the curve

C 2 R2 is defined as

ðX ðhÞ; Y ðhÞÞ ¼ ðx0; y0Þ þ rðhÞðcosðhÞ; sinðhÞÞ;

where

rðhÞ ¼ 0:3ð1þ 0:2 sinð2hþ 5p=6Þ � 0:3 sinð3pþ p=5ÞÞ:

We numerically very accurately compute the arclength S as a function of h, and discretize C uniformly in S
with NC points. Let L denote the length of the curve, and denote the S-values in the discrete points by Sl,
such that Sl ¼ lDS, l ¼ 0; . . . ;NC with DS ¼ L=NC, and denote the coordinates of these points by ðXl; YlÞ.
Assuming a closed curve, we have ðXNC; YNCÞ ¼ ðX0; Y0Þ.

Furthermore, we define a computational domain on ðx; yÞ 2 ½�0:5; 0:5� � ½�0:5; 0:5�, with grid size

h ¼ 1=N in both directions.

We replace the integral over C with a trapezoidal rule, and define

~ICg;f ¼ DS
XNC

l¼1

gðSlÞf ðXl; YlÞ

with gðSÞ � 1 and f ðx; yÞ � 1, ~ICg;f is the numerical approximation to the length of C.
Now we want to measure the error that introducing the approximate delta function creates. Similar to

Eq. (19), but replacing the integral over C by the trapezoidal rule, we define
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deðC; g; xÞ ¼ DS
XNC

l¼1

deðx� XlÞdeðy � YlÞgðSlÞ: ð22Þ

Define the relative error in the numerical computation as

Erel ¼ h2
XN
i;j¼0

dðC; g; ðxi; yjÞÞf ðxi; yjÞ
����� � ~ICg;f

�����
,

j~ICg;f j ð23Þ

with f ðx; yÞ � 1, this numerical error is of the size of round off errors. This was expected, according to

Theorem 3, and the following remark.

Now, we introduce a non-constant gðSÞ and f ðx; yÞ ¼ ~f ðx� x0; y � y0Þ, where

gðsÞ ¼ 1þ cosð2pS=Lþ p=8Þ þ 3 sinð4pS=Lþ p=3Þ;
~f ðx; yÞ ¼ ð1þ xþ sinðpxÞÞð1� y þ sinðpyÞÞex�y

ð24Þ

with f ðx; yÞ defined this way, the integral over dðC; g; xÞf ðx; yÞ is independent of ðx0; y0Þ in the definition of
C. By varying ðx0; y0Þ in the numerical computations, we can see the effects the shifts in the grid have on the

error.

In Table 1, the relative error is shown for the different delta function approximations introduced in

Section 2 in Eqs. (13)–(17). One can note that the two hat functions as well as the piecewise cubic function

yield convergence rates very close to the predicted ones. We have dLh 2 Q2, and dL2h 2 Q2, and can note

second order convergence. For the piecewise cubic approximation we have dC2h 2 Q4, and we can note the

expected fourth order convergence.

For the cosine approximation, we have dcos2h 2 Q1, and we would expect a first order error. In Table 1 we
measure a higher convergence rate in the first refinement, and a lower in the second. To explain this be-

havior, the error must be studied more carefully (see Fig. 2).

The error expansion for the cosine function can be written as

Ecos ¼ hDS
XNC

l¼1

gðSlÞ½fxðXl; YlÞM1ðucos
2 ; gx;lÞ þ fyðXl; YlÞM1ðucos

2 ; gy;lÞ�

þ h2

2
DS
XNC

l¼1

gðSlÞ½fxxðXl; YlÞM2ðucos
2 ; gx;lÞ þ fyyðXl; YlÞM2ðucos

2 ; gy;lÞ�

þ h2DS
XNC

l¼1

gðSlÞ½fxyðXl; YlÞM1ðucos
2 ; gx;lÞM1ðucos

2 ; gy;lÞÞ� þOðh3Þ;
Table 1

The relative error Erel and order of convergence for different de functions

de Relative error (average) Order of convergence

N ¼ 40 N ¼ 80 N ¼ 160 p40–80 p80–160

dLh 1:80� 10�4 4:06� 10�5 9:53� 10�6 2.15 2.09

dL2h 6:64� 10�4 1:62� 10�4 3:99� 10�5 2.04 2.02

dcos2h 4:19� 10�4 1:38� 10�4 9:74� 10�5 1.60 0.50

dC2h 6:03� 10�7 3:46� 10�8 2:09� 10�9 4.12 4.05

The error has been computed averaging over 64 shifts in the grid, i.e., small shifts in ðx0; y0Þ in the definition of C and f ðx; yÞ.
NC ¼ 100.



−0.5 0 0.5
−0.5

0

0.5

0

1
1

2

2

3
3

4

Fig. 2. Curve C with ðx0; y0Þ ¼ ð0; 0Þ plotted in computational domain ½�0:5; 0:5� � ½�0:5; 0:5�. Contours of function f ðx; yÞ as defined
in Eq. (24) plotted in the background.
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where gx;l is such that Xl ¼ xk þ gx;lh, where xk 6Xl < xkþ1, and similarly for gy;l. The relative error

Ecos
rel ¼ jEcosj=j~ICg;f j. The absolute value of the first moment is smaller than 0.025, and furthermoreR 1

0
M1ðucos

2 ; gÞdg ¼ 0. The second moment is positive for all values of g, and 0:506M2ðucos
2 ; gÞ < 0:55.

In computing the different error terms, we find that in this case, the the OðhÞ error term does not

dominate over the first Oðh2Þ error term for the values of h used here; the errors are rather similar in size.

Sometimes these terms are of the same sign, sometimes the opposite. Therefore, we note the fluctuating

convergence rates in Table 1. The errors in this table are computed as the average over 64 small irregular

shifts in the grid. Individual realizations experiences large variations in measured convergence rates. See
also the discussion regarding measured convergence rates in Section 2.

In Table 1, the curve C was discretized by NC ¼ 100 points. As we increase the number of discrete points

on the curve to NC ¼ 1000, the scaled shifts relative to the closest grid point in xðgx;lÞ, and also in yðgy;lÞ will
have a more and more uniform distribution in [0,1), and the fact that the first moment is of different sign at

different points (since it integrates to zero), will make this error term smaller. Therefore, for the moderate

values of the grid size h used here, the error term of second order will dominate, and we measure a con-

vergence rate close to second order for dcos2h , see Table 2.

For the hat functions and the piecewise cubic function, the first non-zero moment is monotone in sign as
a function of g, and the first error term dominates over the second. The convergence of the errors in the

tables, averaged over 64 small shifts in the grid, are very close to the predicted rates for both refinements.

For individual realizations there are of course some variations, and also here we can note that as we in-

crease NC from 100 to 1000 points, the variations decrease. For NC ¼ 100, the measured convergence rates

for the piecewise cubic function fluctuated between 3.48 and 4.71 for individual realizations, while for

NC ¼ 1000, measured convergence rates range from 3.94 to 4.06.
Table 2

As in Table 1, but with NC ¼ 1000

de Relative error (average) Order of convergence

N ¼ 40 N ¼ 80 N ¼ 160 p40–80 p80–160

dLh 1:58� 10�4 4:03� 10�5 1:00� 10�5 1.97 2.00

dL2h 6:42� 10�4 1:62� 10�4 4:04� 10�5 1.99 2.00

dcos2h 4:25� 10�4 1:22� 10�4 3:12� 10�5 1.80 1.97

dC2h 5:59� 10�7 3:43� 10�8 2:14� 10�9 4.03 4.00
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In this section, we have demonstrated that for functions g and f with non-vanishing derivatives, we do

numerically find the expected convergence rates for dLh , d
L
2h and dC2h more closely as we average over a

number of shifts in the grid. In the case of the cosine approximation dcos2h we do not obtain as clean results,
and we have discussed the reasons for this in detail.

Here, we have computed the integral over C with the trapezoidal rule, both for the computation of de
(Eq. (22)) and for the line integral in Eq. (23). The choice of this quadrature rule for the integration over C
is not essential, it can be replaced by any other quadrature rule. The total error compared to the analytical

result
R
C gðSÞf ðXðSÞÞdS will be the error from the regularization as discussed above, plus the numerical

error in evaluating this integral.

3.2. Regularization from distance function

A common technique for extending the regularized one dimensional delta function to several dimensions

is to base the extension on the Euclidean distance to the singular set C. This is the standard procedure in

connection to the level-set method since the distance function dðC; xÞ is often readily available [9,13]. The

multi-dimensional regularized delta function is then defined as

deðC; xÞ ¼ deðdðC; xÞÞ: ð25Þ

In [14,15], we showed that such a procedure, in connection to quadrature and the numerical solution of

differential equations can be of high order accuracy if the support of the regularized delta function satisfies
a number of moment and regularity conditions and if its support is allowed to grow relatively to the step

size h as h ! 0, e � ha, 0 < a < 1.

The choice of the support in practical level-set simulations has however mainly been e ¼ h, 1:5h or 2h, for
discretization on regular grids [9,13]. We shall show that such a choice may result in Oð1Þ error.

Define a curve C 2 R2, that is a straight line at an angle of 45� to the xð1Þ-axis; C ¼ fx; xð1Þ ¼ xð2Þ,
06 xð1Þ < �S=

ffiffiffi
2

p
g. Consider the calculation of the length jCj

jCj ¼ �S ¼
Z
R2

dðC; xÞ dx ð26Þ

computed using a de approximation on a regular grid,

�Sh ¼ h2
X
j2Z2

deðdðC; xjÞÞ; xj ¼ ðxð1Þj1 ; x
ð2Þ
j2 Þ; x

ðkÞ
jk ¼ jkh; jk 2 Z; k ¼ 1; 2: ð27Þ

If we divide the sum �Sh into contributions Rm related to M sub segments of C of length
ffiffiffi
2

p
hðM ¼ �S=ð

ffiffiffi
2

p
hÞÞ,

we have

�Sh ¼ h2
XM
m¼1

Rm þ h2~R; Mh ¼ �S=
ffiffiffi
2

p
:

The terms Rm; m ¼ 1; . . . ;M , corresponds to all values of deðdðC; xjÞÞ withffiffiffi
2

p
ðm� 1Þh6 xj � ð1=

ffiffiffi
2

p
; 1=

ffiffiffi
2

p
Þ <

ffiffiffi
2

p
mh; j 2 Z2

and ~R ¼ Oðh�1Þ contains the finitely many de-values from close to the end points of C.
For the piecewise linear hat function de ¼ dLh using the fact that deðdðC; xjÞÞ ¼ 0, for dðC; xjÞ6 e ¼ h, we

have

Rm ¼ dLð0Þ þ 2dLðh=
ffiffiffi
2

p
Þ ¼ h�1 þ 2h�1ð1� 1=

ffiffiffi
2

p
Þ ¼ h�1ð3�

ffiffiffi
2

p
Þ:
h h



476 A.-K. Tornberg, B. Engquist / Journal of Computational Physics 200 (2004) 462–488
Summing all terms gives

�Sh ¼
3�

ffiffiffi
2

p
ffiffiffi
2

p �S þOðhÞ;

which results in a relative error ðj�Sh � �Sj=�SÞ of over 12% as h ! 0. Repeating the exercise for the wider

piecewise linear hat function with e ¼ 2h we have

�Sh ¼ 1
4
ð5

ffiffiffi
2

p
� 3Þ�S þOðhÞ;

which yields a relative error of 1.8% as h ! 0:
This O(1) error occurs since the support of de, viewed along a grid line in x and y, will not be a multiple

of grid points. In [15], we pointed out that a de discretization in one dimension with 2e ¼ bh; b small but not

an integer, leads to an O(1) error. We also showed, that delta function approximations which yield the

correct mass for any such dilation can be constructed. Such functions do not however have compact

support. They have compact support in Fourier space, and decay exponentially in real space.

We now perform a numerical test to practically illustrate the results from above. Define the curve C as

two parallel lines of length L at a normal distance 2a, joined at both ends by a half circle of radius a. The
angle of the lines to the x-axis is h ¼ p=4. The total length of C is �S ¼ 2Lþ 2pa. A sketch of C is plotted in

Fig. 3, together with the distance function dðC; xÞ, for a specific choice of a and L.
We again define the relative error in the computation of the length of C as E ¼ j�Sh � �Sj=�S, with �S and �Sh

as defined in Eqs. (26) and (27). In Table 3, the relative error E is displayed for different values of L and a,
for different grid sizes h. Here, we have used the narrow piecewise linear hat function, dLh . From the results

in the table, we can see that we do not get any convergence as we decrease h. As a/L decreases, the error
Fig. 3. Sketch of curve C. To the right the contours of the distance function to C defined with L ¼ 2 and a ¼
ffiffiffi
2

p
=4.

Table 3

The relative error E ¼ j�Sh � �Sj=�S, with �S and �Sh defined as in Eqs. (26) and (27) with C as shown in Fig. 3

L a Relative error

h ¼ 0:01 h ¼ 0:005 h ¼ 0:0025

2.0 0.24
ffiffiffi
2

p
0.0803 0.0843 0.0793

2.0 0.12
ffiffiffi
2

p
0.0967 0.0966 0.0956

2.0 0.06
ffiffiffi
2

p
0.1079 0.1075 0.1068

2.0 0.03
ffiffiffi
2

p
0.1142 0.1140 0.1137

4.0 0.03
ffiffiffi
2

p
0.1174 0.1172 0.1176

The delta function approximation de ¼ dLh , the narrow hat function with e ¼ h.



Table 4

As in Table 3, but with the delta function approximation de ¼ dL2h, the wider hat function with e ¼ 2h

L a Relative error

h ¼ 0:01 h ¼ 0:005 h ¼ 0:0025

2.0 0.24
ffiffiffi
2

p
0.0117 0.0119 0.0117

2.0 0.12
ffiffiffi
2

p
0.0142 0.0143 0.0140

2.0 0.06
ffiffiffi
2

p
0.0158 0.0158 0.0156

2.0 0.03
ffiffiffi
2

p
0.0167 0.0167 0.0166

4.0 0.03
ffiffiffi
2

p
0.0172 0.0172 0.0172
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from the straight lines dominates more and more, and in the bottom of the table, we are approaching the

relative error of 12% predicted for the straight lines.

In Table 4, we repeat the same computations for the wider hat function, dL2h. The errors are smaller in this

case, but also here, we have no convergence as h is decreased, and at the bottom of the table, we again

approach the predicted relative error for the straight line, in this case 1.78%.

The O(1) errors that we are observing are not a result of the specific choice of the delta function ap-

proximation de, that is used to define deðdðC; xÞÞ, as was discussed above. For the piecewise cubic dC2h 2 Q4,
numerical computations yield a relative error of 7.1% for all three h refinements for L ¼ 4:0; a ¼ 0:03

ffiffiffi
2

p
.

An O(1) error is to be expected for any de approximation with narrow compact support, since the problem

is the dilation of its support in the grid line directions, as was discussed above.

This choice of C shows a special case with large errors. All local errors in the linear part of C have the

same sign and no cancellation of errors occur. This case have been selected since it clearly illustrates the

substantial O(1) errors that do exist.

In the case of a circle, cancellation of local errors will occur and the total error will be smaller, see Table

5. The errors fluctuate strongly depending on the location of C in the grid. Not even after averaging over
many shifts of C with respect to the grid is there a regular behavior as a function of h. The table indicates a
weak sub-linear convergence, for all three different choices of de.

3.3. Regularization of characteristic functions

Singularities of lower order than that of the delta function are common in computations of integrals and

differential equations. Regularization of the characteristic function for a domain is used to represent

piecewise constant or piecewise smooth functions [9,13,16,17].
We can develop discretely regularized characteristic functions based on the principles of Section 3.1

which produce high order of numerical accuracy. Let us define the characteristic function and its discretely

regularized approximation
Table 5

The relative error E and order of convergence for different de functions used to define deðdðC;xÞÞ
de Relative error (average) Order of convergence

N ¼ 40 N ¼ 80 N ¼ 160 p40–80 p80–160

dLh 1:82� 10�3 1:27� 10�3 1:07� 10�3 0.51 0.26

dL2h 3:31� 10�4 1:03� 10�4 1:76� 10�4 1.68 )0.77ð< 0Þ
dC2h 1:12� 10�3 8:67� 10�4 6:90� 10�4 0.43 0.33

The curve C is a circle of radius 0:35
ffiffiffi
2

p
.

The error has been computed averaging over 144 small irregular shifts of the circle C.
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vðX; xÞ ¼ 1; x 2 X � Rd ;
0; x 62 X;

�
veðX; xÞ ¼

Z
X

Yd
k¼1

dekðxðkÞ � nðkÞÞdn;

where dek is defined in Eq. (13) and we assume that X is bounded in Rd and such that all integrals below are

well defined. We can now derive an error estimate similar to that of Theorem 3 and we will use our notation

from above.

Theorem 4. Suppose that de 2 Qq; q > 0, as in Definition 2.1, and f 2 Cr; rP q. Then

E ¼
Z
Rd

vðX; xÞf ðxÞdx
����� �

Yd
k¼1

hk

 !X
j2Zd

veðX; xjÞf ðxjÞ
�����6Chq

with h ¼ max16 k6 dhk and E ¼ 0 for constant f.

Proof. By definition,
R
Rd vðX; xÞf ðxÞdx ¼

R
X f ðxÞdx. For the second term, we have that

Yd
k¼1

hk

 !X
j2Zd

veðX; xjÞf ðxjÞ ¼
Z
X

h1
X
j12Z

deðxð1Þj1

"
� nð1ÞÞ h2

X
j22Z

� � � hd
X
jd2Z

deðxðdÞjd

""
� nðdÞÞf ðxjÞ

#
� � �
##

dn:

From here the proof follows analogously to that of Theorem 3, with the integral over C replaced by the

integral over X. Note that the argument of de in this case is such that we obtain f ðnÞ instead of f ðXðSÞÞ
before.

The computation of ve is more involved than that of the regularized delta function since the integration is
over X. However, the support of de is narrow and thus integration is only needed in a band with a distance

of order h to the boundary oX of X. In the domain interior of that band ve � 1.
4. Differential equations with singular source terms

The properties of source term regularization in the numerical solution of differential equations are

closely related to the regularization of singular integrands in numerical quadrature as discussed in Sections

2 and 3.

Let the solution of a differential equation

Lu ¼ sðxÞ; x 2 X � Rd ;

Bu ¼ rðxÞ; x 2 oX
ð28Þ

be given on the standard form as an integral of the fundamental solution Gðx; yÞ multiplying the source

term sðxÞ

uðxÞ ¼
Z
X
Gðx; yÞsðyÞdyþ RðxÞ; ð29Þ

where RðxÞ represents the contribution from the boundary conditions. Let the solution of the corre-

sponding numerical approximation have the form

uj ¼
Yd
k¼1

hk

 !X
m2Xh

Gjmsm þ Rj; ð30Þ

where Gjm is the discrete fundamental solution and Xh is the index set for the grid points inside X.
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We will consider Eq. (29) with sðyÞ ¼ dðC; g; yÞ for x values away from the discontinuity and thus

assume that dðC; g; yÞ has compact support away from the boundaries and that jx� yjPC > e for any

y 2 C. In the discrete approximation, we use a regularized delta function and define sm ¼ deðC; g; xmÞ in
Eq. (30). If we consider homogeneous boundary conditions, we have that uðxÞ is given by Eq. (29) with

RðxÞ ¼ 0 and uj by Eq. (30) with Rj ¼ 0 and where the summation over m can be replaced by m 2 Zd .

We then have

juðxjÞ � ujj ¼
Z
X
Gðxj; yÞdðC; g; yÞdy

����� �
Yd
k¼1

hk

 !X
m2Zd

GjmdeðC; g; xmÞ
�����

6

Z
X
Gðxj; yÞdðC; g; yÞdy

����� �
Yd
k¼1

hk

 !X
m2Zd

Gðxj; xmÞdeðC; g; xmÞ
�����

þ
Yd
k¼1

hk

 !X
m2Zd

½Gðxj; xmÞ
����� � Gjm�deðC; g; xmÞ

�����:
For the first part of the error, we can now identify the function f in Eq. (3) with the Greens functions above

for fixed xj. The error analysis of Sections 2 and 3 will thus apply directly. If we assume deðC; g; xmÞ is

defined as in Eq. (19), based on deðxÞ; x 2 R, where deðxÞ 2 Qq, i.e., satisfies q moment conditions the error

of the first part will be of OðhqÞ.
Furthermore, if the numerical approximation is of order p with

jGjm � Gðxj; xmÞj6C1hp;

away from xj ¼ xm, then the total error

juj � uðxjÞj6C2hminðp;qÞ; ð31Þ

where jxj � xjPC > e for any x 2 C.
For deðC; xÞ ¼ deðdðC; xÞÞ (as in Eq. (25)), with e ¼ mh, no such estimate can be obtained. In fact, as

shown in Section 3.2, there are cases where the quadrature error is O(1). In Section 4.3, we perform a

numerical test also for this approximation, solving the Poissons equation with a singular source term in
2D.
4.1. Ordinary differential equations

Now, consider a simple boundary value problem, including a delta function as the right hand side

� uxx ¼ dðx� �xÞ;
uð0Þ ¼ uð1Þ ¼ 0;

ð32Þ

where �x 2 ð0; 1Þ. This equation has the solution

uðxÞ ¼ Gðx;�xÞ ¼ xð1� �xÞ; 06 x6�x;
�xð1� xÞ; �x < x6 1;

�

where G is the Green’s function. The solution can also be written

uðxÞ ¼
Z 1

0

Gðx; yÞdðy � �xÞdy:
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Introducing a uniform grid with grid size h ¼ 1=N and grid points xj ¼ jh, j ¼ 0; . . . ;N , the equation is

discretized by

�D2uj ¼ deðxj � �xÞ; j ¼ 1; . . . ;N � 1; u0 ¼ uN ¼ 0: ð33Þ

We discretize the second derivative using both a second and a fourth order approximation. For second
order, set D2 ¼ D2

2, where

D2
2uj ¼ ðujþ1 � 2uj þ uj�1Þ=h2 ð34Þ

and for the fourth order approximation, set D2 ¼ D4
2, where

D4
2uj ¼

ðujþ4 � 6ujþ3 þ 14ujþ2 � 4ujþ1 � 15uj þ 10uj�1Þ=ð12h2Þ; j ¼ 1;
ð�ujþ2 þ 16ujþ1 � 30uj þ 16uj�1 � uj�2Þ=ð12h2Þ; 26 j6N � 2;
ð10ujþ1 � 15uj � 4uj�1 þ 14uj�2 � 6uj�3 þ uj�4Þ=ð12h2Þ; j ¼ N � 1:

8<
: ð35Þ

For �x ¼ xm and replacing deðxj � xmÞ in Eq. (33) by h�1djm, where djm is the Kronecker delta, the solution for
the second order difference stencil is the discrete Greens function

G2
jm ¼ xjð1� xmÞ; 06 j6m;

xmð1� xjÞ; m < j6N :

�
ð36Þ

The solution for general �x is given by

uj ¼ h
XN
m¼0

Gjmdeðxm � �xÞ ð37Þ

with Gjm ¼ G2
jm.

The function Gðxj; xmÞ is regular for xj 6¼ xm and G2
jm is regular for j 6¼ m. By regular for the discrete

function G2
jm is meant that it has bounded divided differences of arbitrary high high order. The error

juj � uðxjÞj is given by an expansion of the form in Eq. (3) and the moment conditions for accuracy given in

Proposition 1 apply. This discrete Greens function is piecewise linear, and for a de that obeys at least two
moment conditions, i.e., de 2 Qq; qP 2, the numerical solution will therefore be exact (to round off error)
away from the singularity. This is the case for example for the linear hat function. The cosine function

dcos2h 2 Q1, and will have an OðhÞ error. We will not discuss this low order approximation further.

In the upper row of Fig. 4, the error has been plotted for the second order discretization D2
2 with de as

dLh ; d
L
2h and dC2h. Away from the singularity, we have only round off errors. Close to the singularity, for dL2h

and dC2h. we have an OðhÞ error at two grid points. This yields an OðhÞ error if measured in maximum norm,

and an Oðh2Þ error if measured in 1-norm. For the narrow hat function, there is no peak in error at the

singularity. The difference Eq. (33) with D2 ¼ D2
2 and de ¼ dLh yields uj ¼ uðxjÞ, the exact solution to (32).

This is a very specific property for this combination of difference stencil and de function. It can be seen by
detailed truncation error analysis, see [2].

For the fourth order stencil D4
2 in Eq. (35), the corresponding characteristic equation is

r4 � 16r3 þ 30r2 � 16r þ 1 ¼ ðr � 1Þ2ðr � 7þ
ffiffiffiffiffi
48

p
Þðr � 7�

ffiffiffiffiffi
48

p
Þ ¼ 0

with real roots r1 ¼ r2 ¼ 1, r3 ¼ 7�
ffiffiffiffiffi
48

p
� 0:07, r4 ¼ 7þ

ffiffiffiffiffi
48

p
� 13:93, and the homogeneous solution is

uj ¼ a1 þ a2jþ a3r
j
3 þ a4r

j
4. The discrete Greens function is given by

G4
jm ¼ gLj ¼ aL1 þ aL2 jþ aL3 r

j
3 þ aL4 r

j
4; 06 j6m;

gRj ¼ aR1 þ aR2 jþ aR3 r
j
3 þ aR4 r

j
4; m < j6N ;

(
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To determine the coefficients, we need to solve �D2
4G

4
jm ¼ djm, where djm is the Kronecker delta, with ho-

mogeneous boundary conditions. We have that D4
2g

L
j ¼ D4

2g
R
j ¼ 0, for j ¼ 2; . . . ;N � 2, for any choice of

the coefficients aL1 ; . . . ; a
L
4 ; a

R
1 ; . . . ; a

R
4 . However, at j ¼ 1 and j ¼ N � 1, the stencil is skew, and this is not

the stencil for which the characteristic equation was derived. This puts conditions on the coefficients. It is

also the case at j ¼ m� 1 and j ¼ mþ 1, where the stencil will use a combination of values from the left and
right solution. Furthermore, we have a continuity condition at j ¼ m. In summary, the eight conditions that

determine the coefficients are D4
2G

4
mm ¼ �1=h;D4

2G
4
jm ¼ 0 for j ¼ 1;m� 1;mþ 1;N � 1;G0m ¼ GNm ¼ 0 and

gLm ¼ gRm . Solving the full system yields long and complicated expressions for the coefficients. Ignoring

exponentially small terms, an approximation to the discrete Greens function is given by

G4
jm ¼ xjð1� xmÞ � hð16r34 � 31r24 þ 16r4 � 1Þ�1rj�mþ3

4 ; 06 j6m;
xmð1� xjÞ � hð16r34 � 31r24 þ 16r4 � 1Þ�1rm�jþ3

4 ; m < j6N ;

�

where r4 ¼ 7þ
ffiffiffiffiffi
48

p
, and we have used r3 ¼ l=r4.

In difference to the second order approximation, for which the discrete Greens function as given in Eq.
(36) is piecewise linear (the characteristic function in that case is r2 � 2r þ 1 ¼ ðr � 1Þ2 ¼ 0 and the ho-

mogeneous solution is uj ¼ a1 þ a2j), it is in this case given by the same piecewise linear function plus a

term that is exponentially small in most of the domain. The extra term has a maximum value proportional

to h and it decays exponentially as a function of jj� mj.
The numerical solution is given by the sum in Eq. (37). The solution uj at xj is hence obtained by

evaluating the value of G4
jm at (xj;�x) by interpolation, where the de approximation determines the inter-

polation weights. The accuracy of the interpolation for xj away from �x is controlled by the discrete moment

conditions, and normally for de 2 Qq, this would yield an OðhqÞ error (Proposition 1). However, for this
result to hold, the derivatives of the discrete Greens function must be bounded independently of h. This is
however not the case, the pth derivative of G4

jm contains a term that is exponentially decaying, but that has a

magnitude proportional to h � h�p. This yields an OðhÞ exponentially decaying error independent of the

moment order of the de function. Furthermore, the discrete Greens function G4
jm contains the exponentially

decaying terms, and hence so does also the interpolated value at ðxj;�xÞ. Since the exact solution is equal to
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the linear part of this Greens function, this also yields an OðhÞ error that decays exponentially away from �x.
In total, the OðhÞ exponential terms will give essential contributions to the solution close to x ¼ �x, see
Fig. 4.

As was the case for the dLh in combination with D2
2, also for the fourth order stencil, it is possible to derive

a de function such that the difference Eq. (33) with D2 ¼ D4
2 and this de function yields uj ¼ uðxjÞ, the exact

solution to Eq. (32). This function dLL2h is given by Eq. (13) with e ¼ 2h and the piecewise linear u
function

uLL
2 ðnÞ ¼

1
12
ð14� 15jnjÞ; 06 jnj6 1;

1
12
ð2� jnjÞ; 1 < jnj6 2:

�
ð38Þ

This function can be derived by a detailed truncation error analysis, taking care to expand the solution

separately to the left and the right of �x. In the end, this leads to four conditions, involving four grid points

xm�1; xm; xmþ1; xmþ2, where �x ¼ xm þ gh; 06 g < 1 that should hold for all g.
The de approximation dLL2h obeys two moment conditions, i.e., dLL2h 2 Q2. For equations where the Greens

function is a general function with non-vanishing derivatives, this will limit the numerical order away from
the singularity to second order, even if the finite difference approximation is of higher order, as given in Eq.

(31). This will be shown numerically in Section 4.2.

Similar to the discussion in Section 2.2 for general quadrature formulas, there are examples where the

support of the de function must be increased to accommodate certain difference stencils. Consider a simple

model problem

du
dx

¼ dðx� �xÞ; x > 0; �x > 0; uð0Þ ¼ 0:

The fundamental solution and here also the solution is given by the Heaviside function uðxÞ ¼ Hðx� �xÞ.The
numerical method

Duj ¼ deðxj � �xÞ; jP 0;�x > e; u0 ¼ 0 ð39Þ

with Duj ¼ Dþ uj ¼ ðujþi � ujÞ=ð2hÞ, has the solution uj ¼ h
Pj�1

m¼0 deðxm � �xÞ and one moment condition is

enough to guarantee full accuracy if xj < �x� e or xj > �xþ e. More generally, the solution uj of (39) can be

written using the discrete Greens function Gjm

uj ¼ h
X1
m¼0

Gjmdeðxm � �xÞ; Gjm ¼ 0; j6m;
1; j > m:

�
ð40Þ

If we instead use centered differencing which has a wider stencil, i.e., let D ¼ D0 in Eq. (39), where

D0uj ¼ ðujþ1 � uj�1Þ=ð2hÞ the standard moment conditions do not imply accuracy. The discrete Greens
function for this discretization solves Eq. (39) with D ¼ D0 and deðxj � �xÞ replaced by the Kronecker delta

djm, and it is not regular for j > m

Gjm ¼
0; j6m;
2; j > m; j� m odd;
1; j > m; j� m even;

8<
: ð41Þ

since the divided difference Dþ Gjm is not bounded as h ! 0. The discrete solution is given by the sum

in Eq. (40), and with de ¼ dLh the narrow hat function, we have an O(1) error for j > m if for example
�x ¼ xm.

The fundamental solution Gjm in Eq. (41) can be seen as quadrature weights and the analysis of Section
2.2 apply. With the wider hat function de ¼ dL2h we recover full accuracy away from the singularity.
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4.2. Parabolic equations

Let us now consider the time dependent equation

ut ¼ uxx þ adðx� �xðtÞÞ ð42Þ

with uð0; tÞ ¼ uð1; tÞ ¼ 0; uðx; 0Þ ¼ 0 and where �xðtÞ 2 ð0; 1Þ. Solutions to this equation with a ¼ 10 are

plotted in Fig. 5.

In space, we discretize uxx either by the second order approximation D2
2 (Eq. (34)), or the fourth order

approximation D4
2 (Eq. (35)). We use the explicit second order Runge–Kutta method (Heun’s method) in

time, with a time step Dt. For stability reasons, we need Dt � h2 , and the time stepping error will therefore

be Oðh4Þ. The de functions that we use are, as before, dLh ; d
L
2h, and dC2h We also include dLL2h as defined with

uLL
2 in Eq. (38).
Since we do not have an exact solution, we measure the numerical convergence using the difference of

consecutively refined solutions. We compute with ðN ;DtÞ ¼ ðN0;Dt0Þ; ð2N0;Dt0=4Þ, etc., with

N0 ¼ 20;Dt0 ¼ 2:5� 10�4, and N ranging from 20 to 320.

First, consider the case where the singularity location is constant in time, with �x ¼ 1=3. From Fig. 6, we

can note a first order convergence in maximum norm for the discretization choices dL2h;D
2
2 and dC2h;D

4
2. For

the discretization choices dLh ;D
2
2 and dLL2h ;D

4
2, we observe a second order convergence in maximum norm.

This is a very special property for these discretization pairs. As discussed in Section 4.1, these discretizations

solve the boundary value problem in Eq. (32) to round off error. All these four discretizations have a second
order convergence in 1-norm. For the cases where the maximum norm is OðhÞ it is so over an interval of

width OðhÞ, which yields an Oðh2Þterm in the 1-norm. Now, introduce an interval

~I ¼ fx : 06 x < �x� b;�xþ b < x6 1g
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Fig. 5. Solutions to Eq. (42) with a ¼ 10. Left frame: t ¼ 0:03, �x ¼ 1=3; right frame: t ¼ 0:2, �xðtÞ ¼ 0:5þ 0:3 sinð10ptÞ.
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with b ¼ 0:1, where we have cut away the region closest to �x For the hat functions combined with the

second order finite difference discretization, the maximum error measured over ~I is Oðh2Þ. This is the case

also for dLL2h combined with D4
2, as is shown in the right most plot in the figure. Even though D4

2 is a fourth
order approximation to the spatial derivative, this error is only second order since dLL2h obeys only two

moment conditions. Combining D4
2 with the delta function dC2h that obeys four moment conditions, this

error is Oðh4Þ as can be seen in the same plot.

Wald�en [18] reported only second order convergence in a numerical simulation with a fourth order

difference approximation of the heat equation coupled to a delta function regularization with four moment

conditions satisfied. There was no explanation given and the result seems to contradict ours. We expect the

reason for not achieving fourth order convergence rate away from the singularity comes from the initial

values. In our example u ¼ 0 initially but in [18] u had initial values with a discontinuity in the derivative.
Wald�en also notes that for large t-values there is fourth order convergence which would be consistent with

the assumption that the second order error components originate from the initial values and then dissipate

with time. For analysis of numerical errors in difference approximations of the heat equation with non

smooth initial data, see [5].

Now, let �xðtÞ ¼ 0:5þ 0:3 sinð10ptÞ in Eq. (42). Compared to the previous case with a constant �x, it is
more difficult in this case to get clean numerical results for the convergence rates; the grid effects are more

pronounced. With the choice above, we measure the error at t ¼ 0:2, a time where �xðtÞ ¼ 0:5 is at a grid

point for all grid resolutions. The singularity has however passed over a large interval over time; from 0.5 to
0.8, then to 0.2, and back to 0.5 in a sinusoidal motion. For this time dependent singularity location, a

second order maximum error is not achieved for any discretization pair. In all cases, there is now a first

order error present. This component is however smaller for the discretization pairs D2
2; d

L
h and D4

2; d
C
2h, who

had a second order maximum error in the case of a constant �x.
We find in general, that the larger errors close to the singularity spread somewhat more compared to the

case of a fixed �x. In the right most plot in Fig. 7, we measure the error with b ¼ 0:2 in the definition of ~I .
Again, we find that the order of convergence for the discretization choice dLL2h ;D

4
2 is limited to second order,

due to the moment order of dLL2h even though the finite difference discretization is fourth order accurate.
With dC2h we have a fourth order convergence away from the singularity also in this case.

4.3. Elliptic equations

Let us consider the Poisson equation in R2

� Du ¼ dðC; xÞ; x 2 X � R2;

uðxÞ ¼ vðxÞ; x 2 oX;

where X ¼ fx ¼ ðx; yÞ; jxj6 1; jyj6 1g.
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With C a circle, C ¼ fx; jx� �xj ¼ 1=2g, and vðxÞ ¼ 1� logð2jx� �xjÞ=2, this equation has the following

solution

uðxÞ ¼ 1; jx� �xj6 1=2;
1� logð2jx� �xjÞ=2; jx� �xj > 1=2:

�
ð43Þ

This solution has been plotted in Fig. 8.

We introduce a uniform grid, with step size h ¼ 2=N in both x and y, i.e., with ðN þ 1Þ � ðN þ 1Þ grid
points. As in Section 4.1, we use either second order stencil D2

2 (Eq. (34)) or the fourth order stencil D4
2 (Eq.

(35)) to discretize the second derivatives.

The one dimensional delta function approximations are extended to two dimensions by the product rule

in Eq. (22). We use NC ¼ 1000 points to define the curve C. This fixed number of points is large enough for
the resolution of the curve to be comparable to the grid resolution, also for the most refined grid that we

will use.

To display how the error in the numerical solutions behaves close to C, we plot a cut of the error at y ¼ 0

as a function of x in Fig. 9. The computations were done with N ¼ 160, for �x ¼ 0, for different combinations

of the delta function approximation and finite difference approximations for the spatial derivatives. From

left to right, we use dLh combined with the second order finite difference approximation D2
2; d

L
2h again with D2

2;

and dC2h together with the fourth order finite difference approximation D4
2.

The errors for the two hat functions dLh and dL2h are almost identical, except at a few points close to C,
which for this cut is crossed at x ¼ �0:5 and x ¼ 0:5. Here, the properties of the narrow hat function when

combined with D2
2 as discussed above, reduces the error in these points, while the error for the wider hat

function has a jump in one or two points close to C. For dC2h with D4
2, the overall error is much lower, but it

has a jump in the error close to C which is spread out over more points. This is due to the property of the

wider finite difference stencil that was discussed in the previous section.

In the two left plots in Fig. 10, we show the error in maximum norm and L1 norm, as a function of N for

these three discretization choices. The specific property of the combination dLh and D2
2, as discussed in the

previous section, does not hold perfectly in this case to yield an Oðh2Þ maximum error, and also this
maximum error is now OðhÞ. It does however reduce the maximum error, and it has almost as small

maximum error as dC2h combined with D4
2. An OðhÞ error in a fixed number of points yields an Oðh2Þ error

when measured in L1-norm.

For dC2h, the error made in the points around C dominates the L1-norm measure. To measure the error

away from C, we introduce the sub-domain
Fig. 8. Solution uðxÞ as in Eq. (43) for �x ¼ 0.
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2 ðsÞ. In the right most frame, the maximum norm (D) and 1-norm (}) as measured over ~X is plotted for

dC2h;D
4
2. The dashed lines in the plots are from left to right proportional to 1=N , and 1=N 2 and 1=N 4, respectively.
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~X ¼ fx : x 2 X; jdðC; xÞj > bg:

We pick b ¼ 0:2, which is 2h in the coarsest grid, and check the convergence in the maximum norm and L1-
norm when measured over this domain. The result is plotted in the right most frame in Fig. 10. We find a

fourth order convergence as expected. For the first refinement, we get an artificially high convergence rate

since b is not large enough for the coarsest grid to exclude the region where the exponentially decaying OðhÞ
error component is dominating. We need approximately b ¼ 4h to do so. For a shift in the grid,
�x ¼ ð1=3� 1=5; 1=3� 1=5Þ, such that �x is not a grid point at any resolution, the results are very similar.
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Fig. 11. In the left figure, the max norm (�) and 1-norm (+) of the error are plotted for the discretization dC2hðdðC; xÞÞ;D4
2. In the right

figure, the error for y ¼ 0 is plotted as a function of x, for N ¼ 160.
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In Section 3.2, we showed that narrow delta function approximations based on the distance to the curve,

deðdðC; xÞÞ, does not yield accurate results when integrating over the delta function. This property is im-

portant also in the context of differential equations, as discussed above.
We now define deðC; xÞ ¼ dC2hðdðC; xÞÞ, and combine it with the fourth order spatial discretization. That

is, we use the same one dimensional delta function, dC2h, that was used above, but we extend the definition to

two dimensions not by the product rule in Eq. (22), but instead by the closest distance to C. In this case, we

can not establish even a first order convergence rate for the error in the maximum norm nor in the L1-norm
and, as is also shown in Fig. 11, the error away from C is much larger compared to when the product

formula is used to define the delta function approximation.
5. Conclusions

In this paper, we have analyzed the accuracy of regularizations of Dirac delta functions, that can be used

on standard computational grids in connection to numerical solution of differential equations with singular

source terms and quadrature with singular integrands. The main contributions are in the analysis and

development of techniques for multi-dimensional problems. We focus on the practically useful case of

regularizations de with narrow support.

If the support is wide enough, so that de can be assumed to be well resolved on the grid, the error can be
analyzed by splitting it into an analytical and a numerical part. This can be done also in several dimensions,

where the de function is extended by using the distance function, s.t. deðC; xÞ ¼ deðdðC; xÞÞ. The results

regarding quadrature errors can be found in [14]. These results are related to the solution of partial dif-

ferential equations, which has been further discussed in [15]. The optimal scaling will in general be alge-

braic, where the half width of the support e � ha; 0 < a < 1.

In this paper, we have studied de functions with a more narrow support, where e ¼ mh with m typically 1

or 2. Such approximations are the most common in practice. In this case, the de function is not resolved on

the computational grid, and the discrete error must be analyzed directly. In one dimension, the discreti-
zation error of such a delta approximation is determined by the number of discrete moment conditions that

this de function obeys (Proposition 1).

For partial differential equations in one spatial variable, the same discrete moment conditions, together

with the order of the discretization, determine the accuracy away from the location of the singularity. Close

to the singularity, an OðhÞ error is to be expected, except in some special simple cases where some com-

binations of de function and difference stencils will yield an Oðh2Þ error in the maximum norm.

We have discussed two different ways to extend the one dimensional de approximation to several di-

mensions; either by using the so called product rule in Eq. (19), or by the use of the distance function as in
Eq. (25).

If the de function is extended to several dimensions by the distance formula, the result can have large

errors. The possible failure has been illustrated by the computation of the length of a straight line at a 45�
angle to the x-axis. With e ¼ mh, this error does not decrease with h. It is O(1). To obtain convergence when

extending the de function to several dimensions using approximations only based on the distance function, e
must be larger and chosen to scale algebraically with h [14,15]. Regularization based on the distance

function is however very convenient for level-set methods. In order to avoid the Oð1Þ errors for narrow

support regularization and still use the distance function we plan to let de also depend on the local angle
between C and the coordinate axes. This will be the focus of a forthcoming paper.

For a de function extended to several dimensions by the product rule, we have proven that the quad-

rature error is bounded by Chq, where q is the number of discrete moment conditions that the one di-

mensional de function obeys (Theorem 3). The error for the solution to elliptic equations away from the

singularity is, similarly to the error for PDEs in one space dimension, determined by these discrete moment
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conditions, together with the order of the discretization. We have, for example, derived an approximation

of the Poisson equation for which the error is OðhÞ close to the singularity and Oðh4Þ in the rest of the

domain.
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